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Abstract. A general stochastic model of cluster growth is proposed. In two special limits 
the model is reduced to the diffusion-limited aggregation (DLA) and the Eden models. By 
varying a physical parameter, the model interpolates smoothly between the DLA and the 
Eden model, and is also capable of simulating miscible viscous fingers in a porous medium, 
when dispersion effects are absent, in which the ratio of the viscosities of the displaced 
and displacing fluids is finite. The predictions agree with previous results obtained by a 
deterministic model. The model also has close connections with a variety of other models 
of growth phenomena. 

Various non-equilibrium growth models have been studied actively during the last few 
years [ l ,  21 because of their relevance to a wide variety of phenomena of scientific 
and industrial interest, such as the growth of crystals from an undercooled melt or a 
supersaturated solution, coagulation of smoke particles, growth of tumours, turbulence, 
dielectric breakdown of composite solids and displacement of one fluid by another. 
The simplest of such growth models are perhaps the Eden model [3] and the diffusion- 
limited aggregation (DLA)  model of Witten and Sander [4]. In the Eden model one 
starts from an occupied site of a large lattice, and at every step occupies one other 
site, which is selected randomly from the set of sites, called perimeter sites, which 
have at least one nearest-neighbour occupied site. This simple process allows every 
unoccupied site again and again the chance to become occupied. Therefore, after a 
long time, every site of the lattice will finally become occupied. Thus, if one charac- 
terises this model with a fractal dimension 0, then D = d, where d is the Euclidean 
dimension of the lattice. In a variant of this model [SI, if a perimeter site of the lattice 
is picked at random but does not become part of the growing cluster (i.e., the probability 
of its joining the cluster is less than one), it remains unoccupied forever. The clusters 
grown in this way no longer have trivial structures and, in fact, have close connections 
with a variety of complex dynamical processes such as directed percolation and cellular 
automata. 

In the DLA model the initial state is a seed particle located at the centre of a large 
lattice. A second particle is released at the surface of this lattice, which performs a 
random walk until it reaches a site adjacent to the seed site, where it stops its random 
walk and joins the cluster. The process of releasing the particles is continued until a 
large cluster is formed. This model has been extensively studied in the past few years 
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[2]. It is now generally believed that the DLA model has a fractal dimension of D = 1.7 
in ZD. 

Paterson [6] pointed out that the DLA model is essentially equivalent to the problem 
of a miscible displacement in a porous medium in which a fluid of viscosity p ,  displaces 
another fluid of viscosity p 2 ,  with m = p 2 / p ,  + W. This process is always unstable and 
is characterised by the formation of a multitude of viscous fingers (VFS) of the displacing 
fluid penentrating through the displaced fluid. The analogy between the DLA model 
and V F ~  is appropriate when m +CO, and dispersion (mixing) effects are completely 
absent. Experimental works [7-91 have confirmed the qualitative similarities between 
the DLA model and VFS in the limit m +CO. Theoretical studies [ 10-121 have indicated 
that although the DLA model and VFS may be characterised by approximately the same 
fractal dimensionality 0, the sweep efficiencies of the two processes, namely, the 
volume fraction of the pore space swept by the displacing fluid, may not be equal, so 
that the analogy between the two phenomena is not generally exact. Despite this, the 
DLA model can often provide a good approximation to the problem of VFS in a porous 
medium. 

While there have been several studies of VFS for finite values of m [13-171, there 
has not been any rigorous attempt to generalise the DLA model in order to simulate 
VFS, for finite values of m, using only random walk methods. Instead, these studies 
[ 13-16] have relied on the explicit calculations of the flow field, and the advancement 
of the displacing fluid based on a stochastic rule, which is essentially equivalent to a 
model of dielectric breakdown of composite solids [18], or a deterministic rule [17]. 
An earlier attempt by Sahimi and Yortsos [19] to simulate VFS, for finite values of m, 
by random walk methods is not generally exact. Kadanoff [20] has developed a rigorous 
method for simultating VFS in a Hele-Shuw cell. However, his method is only appropri- 
ate for the Hele-Shaw cell in the limit m + 00, and when surface tension is present (i.e., 
an immiscible displacement). From a computational point of view, it would be highly 
desirable to develop a random walk algorithm for studying VFS for finite values of m, 
since such an algorithm can be very efficient in terms of computer time and memory. 
The purpose of this letter is to develop such an algorithm. We also show that this 
algorithm is a general model of cluster growth for which the Eden and DLA models 
represent two special limits. As such the model is the first of its kind. 

We first note that, without dispersion and surface tension effects, it suffices to find 
the pressure field in the regions of displacing and displaced fluids, which obeys 

V ( k V P i ) = O  i = 1 , 2  (1) 

where k is a position-dependent local permeability, P the pressure, and subscripts 1 
and 2 refer to the displacing and displaced fluid, respectively. The boundary between 
the two fluids advances according to Darcy’s law 

k 
U = - - V P  

P 

where U is the fluid flux. Across the front that separates the two fluids, pressure and 
fluid fluxes must be continuous, PI = P2 and u1 = u 2 ,  where these quantities are measured 
just inside regions of fluids 1 and 2. 

Consider two points a and b on two sides of the front, but very close to it. If we 
discretise the pressure field on both sides of the front with equal spacing Ax, we obtain 
aP, /ax  = ( P r -  P , ) /Ax ,  and aP,/ax = (Ph - P,) /Ax,  where Pa,  P f ,  and Ph are the press- 
ures at a, on the front and at b, respectively. Using the fact that the fluid fluxes must 
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be continuous across the front, we obtain M(P, - Pr) = Pr- Ph, from which the pressure 
onthefrontisfound,P,= (MP,+Ph)/(M+l) ,where M = ( k l p 2 ) / ( k Z p l )  isthemobility 
ratio. Similar to the DLA model, we can introduce the probability p that the front 
advances one pore. According to equation (2), p is proportional to the fluid flux in a 
pore adjacent to the front. Because the effective permeabilities k, and k2 experienced 
by the fluids on two sides of the front are essentially equal (since the medium is 
macroscopically homogeneous), we have M = m. However, because of the viscosity 
contrast between the two fluids, the pressure distributions in regions 1 and 2 are not 
the same. Thus, the probability of advancing the front should depend on the local 
pressures at points a and 6. Hence, we generalise the DLA model and introduce two 
probabilities p ,  and p 2  for the advancement of the front, if one approaches it from 
regions 1 and 2, respectively. Using equation (2) and the expression for p v ,  we obtain 
p 2 / p ,  = M, and because 0 S p ,  4 1 and 0 4 p 2  s 1, we finally obtain 

p ,  = ( M +  l ) - l  

and 

p 2  = M (  M + l ) - ' .  

( 3 )  

(4) 

In the language of the DLA model, p ,  and p 2  are the sticking probabilities, i.e., the 
probabilities that the random walkers stick to the growing aggregate, once they are 
adjacent to the front, and advance it by one pore. Therefore, a random walk algorithm 
to simualte VFS for finite values of mobility ratio M may be as follows. We inject two 
types of random walkers into the system. One of them is injected in the region of fluid 
2, at the outer boundary of the system, whereas the other one is injected in the region 
of fluid 1 at the source where fluid 1 is injected into the medium, and each particle 
executes its random walk in its own fluid region (so that equation (1) is satisfied in 
each region). The motion of the particle in the region of fluid 2 is similar to the DLA 

model [2] (except that its sticking probability is less than one). The addition of another 
type of random walker to the region of fluid 1 is the new feature of the model, absent 
from all prevous models, which is necessary if m is finite. In the beginning of the 
simulation, the motion of the particle in the region of fluid 1 is affected by the small 
size of the cluster of fluid 1. However, as the displacement front advances this effect 
vanishes, and the long time behaviour of the system remains unaffected by this. 

If a particle attempts to cross the front from the region of fluid 2, then the last site 
in that region that was visited by the random walker and the bond that connects it to 
the front are filled with the displacing fluid with probability p 2 ,  and the particle is 
removed from the system. However, if the particle does not join the front, it continues 
its journey. Similarly, if a particle attempts to cross the front from the region of fluid 
1, then, the first visited site in the region of fluid 2 and the bond that connects it to 
the front are invaded by the displacing fluid with probability p 2 ,  and the particle is 
removed from the system. But if this move is rejected, the particle continues its motion. 
Thus, according to this algorithm, the front always advances forward, which is physi- 
cally the case as long as surface tension and dispersion are absent, which is the case 
here. Note that in the limit M + m ,  the algorithm is exactly equivalent to the DLA 

model (since pI + 0). Moroever, in the opposite limit M + 0, the pressure in the region 
of displaced fluid is constant and one needs only one type of random walker (moving 
on the cluster of displacing fluid) to simulate the process. Note also that since 
p 1 / p 2  = M = n1/n2,  where n, and n2 are integers, for every n, particles that are released 
in the region of fluid 2, we must release n2 particles in the region of fluid 1 (or, 
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equivalently, for every n, steps that a particle takes in the region of fluid 2 ,  the particle 
in the region of fluid 1 must take n2 steps). This reflects the fact that the pressure 
distributions in the two fluid regions and the mobility ( k / p )  of the fluids are not equal. 

The limit p ,  + 1 represents a random walk version of the Eden model: each particle 
starts its motion from the centre of the cluster, executes its random walk on the cluster, 
and once it reaches an unoccupied site it adds it to the cluster. In one and two 
dimensions, the probability that a random walker, starting at the origin, will visit every 
site of a lattice is one [21] and, therefore, similar to the Eden model every unoccupied 
site will eventually become occupied and part of the growing cluster. In three or higher 
dimensions, the probability that every site is visited by an unrestricted random walker 
is less than one. However, in the present problem, once a random walker visits an 
unoccupied site and adds it to the growing cluster, the random walker is removed and 
a new walk at the origin of the cluster is initiated. It can be shown that in such a 
process, every site will eventually be visited by at least one random walker and, 
therefore, in the limit of long times, the growing cluster will be completely compact 
as in the Eden model. Our computer simulations support this. 

We should mention that if the porous medium is characterised by a pore size of 
pore conductance distribution, then the particles take each step of their random walks 
with a probability porportional to the pore conductance. As such, the model represents 
a growth phenomenon in a disordered porous medium. We also note that Leclerc and 
Neale [ 2 2 ]  have also proposed a two-particle model for simulating flow in porous 
media, although the origin of their laws of the motion of the particles and their relation 
with ours is not clear to us. 

We have used a triangular lattice to simulate this model for various values of M. 
Each bond of the lattice represents a pore, and we assume that all pores have the same 
effective radius. As the experiments of Chen and Wilkinson [7] demonstrated, in an 
ordered medium and in the absence of dispersion, for large values of M, miscible 
displacement of one fluid by another results in completely ordered (dendritic) patterns, 
whereas the model we have described (and the DLA model) predicts random and very 
branched patterns. The reason is that [23] such models are dominated by the noise 
that is generated by the random trajectories of the particles. Only the most exposed 
part of the growing aggregate absorbs the incoming particles. To eliminate this noise, 
one uses a method due to Tang [24]: one counts the number Si of random walkers 
vising the perimeter site i. I f  S, reaches a preassigned value S, i becomes part of the 
aggregate (of the displacing fluid). Once i belongs to the aggregate, S, is nor set to 
be zero for all other sites j and the counting process continues. The limit S = 1 
corresponds to the DLA model, whereas in the limit S + 00, there would be no noise 
in the system (i.e., the mean-field limit). We used this method of noise reduction with 
our model. 

Figure 1 shows the patterns of the displacing fluid for M = 5 and 1000 and S = 100. 
They are in perfect agreement with those obtained by King [ 171 using a fully determinis- 
tic model (based on explicit calculation of the flow field) with no noise. This agreement 
confirms the validity of our model. As can be seen, in the absence of noise the 
anisotropy of the lattice totally dominates the patterns. For M < 1,  the displacement 
process is stable, and the resulting aggregates are completely compact with a fractal 
dimension D = 2 .  For M a  1,  the interior of the cluster of the displacing fluid is 
compact for short-length scales, and one has a compact cluster with D = 2 ,  independent 
of the value of M (this means that if we consider only the interior of the cluster of 
the displacing fluid, the sweep efficiency is 100%). This is because if for short-length 
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Figure 1. Patterns of viscous fingers for mobility ratio M = 5 (top) and M = 1000 (bottom), 
obtained on a triangular network. 

scales D < 2, then the density of the displacing fluid would vanish as the displacement 
proceeds. This means that very thin sections of the displacing fluid would have to 
support a vast tenuous network of fingers at the tips. In fact, if the displaced fluid 
has a finite mobility, one would expect fingers to become thicker. However, for M > 1 
the displacement is unstable, if dispersion effects are absent, and we cannot expect 
the growing cluster to be compact, since there is no intermediate length scale between 
the size of the system and that of a pore. Thus, as pointed out by King [17], only the 
surface of the cluster of the displacing fluid can have a fractal-like character. 

To calculate the fractal dimension D, of the surface sites, i.e., those sites that have 
one or more nearest-neighbour sites occupied by the displaced fluid and which belong 
to the front, we used the two-point correlation function p ( r )  

where N,(  r )  is the number of surface sites in a shell around site i between r and r + Ar. 
One must have p ( r ) - r D \ - d .  The results for p ( r )  are shown in figure 2, while the 
resulting D,, for various values of M,  are shown in figure 3, where they are compared 
with those of King [ 171 who used a deterministic model with no noise. The agreement 
is very good, confirming again the validity of our model. In  a future paper [25], we 
shall show that the predictions of this model are in agreement with the experimental 
measurements of the sweep efficiency of miscible displacements in model porous media. 

As mentioned above, the limit M + 0 ( p z  + 0) represents a random walk version of 
the Eden model. The clusters that we obtain in this limit are all round and compact, 
as expected. A quantity of interest in the Eden model is [26] the thickness W of its 
surface defined through 

W’ = (I2) - ( r ) ’  ( 6 )  
where r is the distance between the unoccupied perimeter sites next to the front and 
the origin of the cluster. This quantity has been shown (see Zabolitzky and Stauffer 
[27] and references therein) to have a peculiar behaviour, even though the Eden clusters 
seem to have a trivial structure. Theoretically, one expects that at d = 2, W - N:”, 
where N,  is the number of sites in the cluster. However, even simulations with very 
large clusters [26] have shown some deviations from this prediction, and the behaviour 
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Figure 2. Two-point correlation function p ( r )  as a function of radius 
of M. 
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Figure 3. Surface fractal dimension 0, as a function of M. Open circles are the results of 
our simulations, while full circles are those of King [ 171. 

of W for d > 2 is particularly anomalous. We have found that if one uses our random 
walk version of the Eden model, the scaling law W- N;'' may be reached relatively 
fast even with relatively small clusters. Thus, this random walk model might prove a 
better means of studying the peculiar behaviour of the surface of the Eden clusters. 
In a future paper, we shall report the results of such a study. 
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